If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+3.62t+0.75=0
a = -4.9; b = 3.62; c = +0.75;
Δ = b2-4ac
Δ = 3.622-4·(-4.9)·0.75
Δ = 27.8044
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3.62)-\sqrt{27.8044}}{2*-4.9}=\frac{-3.62-\sqrt{27.8044}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3.62)+\sqrt{27.8044}}{2*-4.9}=\frac{-3.62+\sqrt{27.8044}}{-9.8} $
| f(24)=1/2X | | 32+p=122 | | P=2(L*b) | | 2/3(-3)+1/3=y | | (4y-7)-y=-7 | | Y=90x+2300 | | (4y-7)-(y-7)=3y | | E^(5x)=16 | | 1/4x+12=x-6 | | 8x-(2x-12)=41 | | 5.8+x=7.5 | | 4x2-1=63 | | 8u+9=73 | | y=2(0.66)+5 | | 20n+9/n=11 | | 64^x-2=256^2x | | 15=1/5r | | X2+9x-(-14)=0 | | 27=16=x | | -r+2=4 | | 139(1x+14)=180 | | 4/5x=1=9 | | -10=-2-4n | | x(0.7)=63 | | 6x+22+64-x=180 | | -5b+9-7=15 | | -32=30-12g | | 13x=79+17x+67=180 | | 13x=79+17x+67 | | -9r+4r=-22 | | 17.4=8.8+p | | 8y=6y-2 |